3.235 \(\int \frac{A+C \sec ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx\)

Optimal. Leaf size=162 \[ \frac{(5 A+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 a d}+\frac{(5 A+3 C) \sin (c+d x)}{3 a d \sqrt{\sec (c+d x)}}-\frac{(A+C) \sin (c+d x)}{d \sqrt{\sec (c+d x)} (a \sec (c+d x)+a)}-\frac{(3 A+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d} \]

[Out]

-(((3*A + C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d)) + ((5*A + 3*C)*Sqrt[Cos[c
 + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a*d) + ((5*A + 3*C)*Sin[c + d*x])/(3*a*d*Sqrt[Sec[c
+ d*x]]) - ((A + C)*Sin[c + d*x])/(d*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.200203, antiderivative size = 162, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {4085, 3787, 3769, 3771, 2641, 2639} \[ \frac{(5 A+3 C) \sin (c+d x)}{3 a d \sqrt{\sec (c+d x)}}-\frac{(A+C) \sin (c+d x)}{d \sqrt{\sec (c+d x)} (a \sec (c+d x)+a)}+\frac{(5 A+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}-\frac{(3 A+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])),x]

[Out]

-(((3*A + C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d)) + ((5*A + 3*C)*Sqrt[Cos[c
 + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a*d) + ((5*A + 3*C)*Sin[c + d*x])/(3*a*d*Sqrt[Sec[c
+ d*x]]) - ((A + C)*Sin[c + d*x])/(d*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x]))

Rule 4085

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> -Simp[(a*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(a*f*(
2*m + 1)), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b*(
2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x]
&& EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+C \sec ^2(c+d x)}{\sec ^{\frac{3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx &=-\frac{(A+C) \sin (c+d x)}{d \sqrt{\sec (c+d x)} (a+a \sec (c+d x))}-\frac{\int \frac{-\frac{1}{2} a (5 A+3 C)+\frac{1}{2} a (3 A+C) \sec (c+d x)}{\sec ^{\frac{3}{2}}(c+d x)} \, dx}{a^2}\\ &=-\frac{(A+C) \sin (c+d x)}{d \sqrt{\sec (c+d x)} (a+a \sec (c+d x))}-\frac{(3 A+C) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx}{2 a}+\frac{(5 A+3 C) \int \frac{1}{\sec ^{\frac{3}{2}}(c+d x)} \, dx}{2 a}\\ &=\frac{(5 A+3 C) \sin (c+d x)}{3 a d \sqrt{\sec (c+d x)}}-\frac{(A+C) \sin (c+d x)}{d \sqrt{\sec (c+d x)} (a+a \sec (c+d x))}+\frac{(5 A+3 C) \int \sqrt{\sec (c+d x)} \, dx}{6 a}-\frac{\left ((3 A+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{2 a}\\ &=-\frac{(3 A+C) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a d}+\frac{(5 A+3 C) \sin (c+d x)}{3 a d \sqrt{\sec (c+d x)}}-\frac{(A+C) \sin (c+d x)}{d \sqrt{\sec (c+d x)} (a+a \sec (c+d x))}+\frac{\left ((5 A+3 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{6 a}\\ &=-\frac{(3 A+C) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a d}+\frac{(5 A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 a d}+\frac{(5 A+3 C) \sin (c+d x)}{3 a d \sqrt{\sec (c+d x)}}-\frac{(A+C) \sin (c+d x)}{d \sqrt{\sec (c+d x)} (a+a \sec (c+d x))}\\ \end{align*}

Mathematica [C]  time = 2.7222, size = 232, normalized size = 1.43 \[ \frac{e^{-i d x} \cos \left (\frac{1}{2} (c+d x)\right ) \sec ^{\frac{3}{2}}(c+d x) (\cos (d x)+i \sin (d x)) \left (i (3 A+C) e^{\frac{1}{2} i (c+d x)} \left (1+e^{i (c+d x)}\right ) \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},-e^{2 i (c+d x)}\right )+2 (5 A+3 C) \cos \left (\frac{1}{2} (c+d x)\right ) \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+2 \cos (c+d x) \left (\sin \left (\frac{1}{2} (c+d x)\right ) (2 A \cos (c+d x)+5 A+3 C)-3 i (3 A+C) \cos \left (\frac{1}{2} (c+d x)\right )\right )\right )}{3 a d (\sec (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])),x]

[Out]

(Cos[(c + d*x)/2]*Sec[c + d*x]^(3/2)*(Cos[d*x] + I*Sin[d*x])*(2*(5*A + 3*C)*Cos[(c + d*x)/2]*Sqrt[Cos[c + d*x]
]*EllipticF[(c + d*x)/2, 2] + I*(3*A + C)*E^((I/2)*(c + d*x))*(1 + E^(I*(c + d*x)))*Sqrt[1 + E^((2*I)*(c + d*x
))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + 2*Cos[c + d*x]*((-3*I)*(3*A + C)*Cos[(c + d*x)/2]
 + (5*A + 3*C + 2*A*Cos[c + d*x])*Sin[(c + d*x)/2])))/(3*a*d*E^(I*d*x)*(1 + Sec[c + d*x]))

________________________________________________________________________________________

Maple [A]  time = 2.204, size = 262, normalized size = 1.6 \begin{align*} -{\frac{1}{3\,ad}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1} \left ( 5\,A{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +9\,A{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +3\,C{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +3\,C{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) -8\,A \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+ \left ( 18\,A+6\,C \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}+ \left ( -7\,A-3\,C \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x)

[Out]

-1/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(5*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*A*EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2))+3*C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-8*A*sin(1/2*d*x+1
/2*c)^6+(18*A+6*C)*sin(1/2*d*x+1/2*c)^4+(-7*A-3*C)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+
1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt{\sec \left (d x + c\right )}}{a \sec \left (d x + c\right )^{3} + a \sec \left (d x + c\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(a*sec(d*x + c)^3 + a*sec(d*x + c)^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{A}{\sec ^{\frac{5}{2}}{\left (c + d x \right )} + \sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx + \int \frac{C \sec ^{2}{\left (c + d x \right )}}{\sec ^{\frac{5}{2}}{\left (c + d x \right )} + \sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)**2)/sec(d*x+c)**(3/2)/(a+a*sec(d*x+c)),x)

[Out]

(Integral(A/(sec(c + d*x)**(5/2) + sec(c + d*x)**(3/2)), x) + Integral(C*sec(c + d*x)**2/(sec(c + d*x)**(5/2)
+ sec(c + d*x)**(3/2)), x))/a

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)*sec(d*x + c)^(3/2)), x)